On modified α-ϕ-fuzzy contractive mappings and an application to integral equations
نویسندگان
چکیده
منابع مشابه
Fixed Points for Α-ψ Contractive Mappings with an Application to Quadratic Integral Equations
Recently, Samet et al [24] introduced the concept of α-ψ contractive mappings and studied the existence of fixed points for such mappings. In this article, we prove three fixed point theorems for this class of operators in complete metric spaces. Our results extend the results in [24] and well known fixed point theorems due to Banach, Kannan, Chatterjea, Zamfirescu, Berinde, Suzuki, Ćirić, Niet...
متن کاملCOUPLED FIXED POINT THEOREMS FOR GENERALIZED Φ-MAPPINGS SATISFYING CONTRACTIVE CONDITION OF INTEGRAL TYPE ON CONE METRIC SPACES
In this paper, we unify, extend and generalize some results on coupled fixed point theorems of generalized φ- mappings with some applications to fixed points of integral type mappings in cone metric spaces.
متن کاملFixed point theorem for mappings satisfying contractive condition of integral type on intuitionistic fuzzy metric space
In this paper, we shall establish some fixed point theorems for mappings with the contractive condition of integrable type on complete intuitionistic fuzzy metric spaces $(X, M,N,*,lozenge)$. We also use Lebesgue-integrable mapping to obtain new results. Akram, Zafar, and Siddiqui introduced the notion of $A$-contraction mapping on metric space. In this paper by using the main idea of the work...
متن کاملImplicit-Relation-Type Cyclic Contractive Mappings and Applications to Integral Equations
and Applied Analysis 3 relations on metric spaces have been used in many articles for details see 14–19 and references cited therein . In this section, we define a suitable implicit function involving six real nonnegative arguments to prove our results, that was given in 20 . Let R denote the nonnegative real numbers and let T be the set of all continuous functions T : R6 → R satisfying the fol...
متن کاملA note on fuzzy contractive mappings in fuzzy metric spaces
Definition 1.1 (see [1]). A triple (X ,M,∗), where X is an arbitrary set, ∗ is a continuous t-norm, andM is a fuzzy set on X2× (0,∞), is said to be a fuzzy metric space (in the sense of George and Veeramani) if the following conditions are satisfied for all x, y ∈ X and s, t > 0: (GV-1) M(x, y, t) > 0; (GV-2) M(x, y, t)= 1 if and only if x = y; (GV-3) M(x, y, t)=M(y,x, t); (GV-4) M(x, y,·) is c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2016
ISSN: 1029-242X
DOI: 10.1186/s13660-016-1007-2